Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters

نویسندگان

  • Volker Nannen
  • A. E. Eiben
چکیده

The main objective of this paper is to present and evaluate a method that helps to calibrate the parameters of an evolutionary algorithm in a systematic and semi-automated manner. The method for Relevance Estimation and Value Calibration of EA parameters (REVAC) is empirically evaluated in two different ways. First, we use abstract test cases reflecting the typical properties of EA parameter spaces. Here we observe that REVAC is able to approximate the exact (hand-coded) relevance of parameters and it works robustly with measurement noise that is highly variable and not normally distributed. Second, we use REVAC for calibrating GAs for a number of common objective functions. Here we obtain a common sense validation, REVAC finds mutation rate pm much more sensitive than crossover rate pc and it recommends intuitively sound values: pm between 0.01 and 0.1, and 0.6 ≤ pc ≤ 1.0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generality of results obtained by the parameter calibration and relevance estimation method

We present and evaluate a method for parameter selection and calibration for evolutionary systems. The general goal of the method is to help distinguishing between relevant and irrelevant algorithm parameters and to select good values for the relevant ones. We apply the method to a number of di erent problem instances (abstract tness landscapes) and test how well the settings generated by our m...

متن کامل

Estimation and Calibration of Robot Link Parameters with Intelligent Techniques

Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy ...

متن کامل

Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...

متن کامل

Evolutionary Agent-based Policy Analysis in Dynamic Environments Evolutionary Agent-based Policy Analysis in Dynamic Environments

Evolutionary algorithms (EAs) form a rich class of stochastic search methods that use the Darwinian principles of variation and selection to incrementally improve a set of candidate solutions (Eiben and Smith, 2003; Jong, 2006). Both principles can be implemented from a wide variety of components and operators, many with parameters that need to be tuned if the EA is to perform as intended. Tuni...

متن کامل

A Note on Evolutionary Rate Estimation in Bayesian Evolutionary Analysis: Focus on Pathogens

Bayesian evolutionary analysis provide a statistically sound and flexible framework for estimation of evolutionary parameters. In this method, posterior estimates of evolutionary rate (μ) are derived by combining evolutionary information in the data with researcher’s prior knowledge about the true value of μ. Nucleotide sequence samples of fast evolving pathogens that are taken at d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007